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1. INTRODUCTION

Problems in remote sensing generate large picture element (pixel) data sets

from which it is often necessary to extract a subset for more intensive analy-

sis. There is a tendency, because of classical statistical thinking, to treat

these subsets as independent random samples, whereas in practice, there are

usually important geographical patterns to be allowed for. In this report, a

simple method of geographical sampling is proposed which accounts for a wide

variety of existing patterns in the pixel data.
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2. SAMPLING OF RECTANGULAR REGIONS

To estimate a parameter of a population which can be thought of as having a

uniform spatial distribution, it may be necessary to modify the usual consid-

erations of sampling theory. In particular, there may be correlations between

spatial neighbors, thus violating the assumptions of independence.

There are several possible approaches to dealing with these assumptions. If

it is evident that or one is willing to assume that correlations between

neighbors in the variables of interest decrease rapidly with distance, then

small random samples can be taken in the hope that, on the average, the sites

sampled will be sufficiently separated. Alternatively, a systematic sample

may be taken at sites that are intentionally spaced as far apart as prac-

tical. For example, if the region is rectangular, it may be subidvided into

isomorphic subrectangles and a point sampled as near as possible to the center

of each subrectangle. If the correlations over substantial distances fail to

be negligible, other strategies are in order.

If estimation is to be linear, the x and y coordinates of each sample or power

thereof may be used as covariates. Alternatively, explicit assumptions about

the correlations between points may be made, and the estimation adjusted

accordingly.

Both of these approaches depend on fairly specific assumptions and can be

quite complicated to carry out in practice. Accordingly, an alternative

method is proposed herein allowing for spatial correlations. The method is

very simple to use and depends on fairly weak assumptions.

0
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3. ALTERNATIVE METHOD

Assume that there is a need to estimate parameters of a large population dis-

tributed uniformly over a rectangular region R. Let the parameter

1	 J J f (x,y)dxdy
a ' j,W R a

where fa is square-integrable on R. If (x i , y i ) are the coordinates of any

sample value, then that value is an estimate of f a (x i , y i ). Thus, fa expres-

ses the spatial dependence of whatever is being estimated.

The problem of estimating parameter a from a sample becomes (in this formula-

tion) a problem in quadrature (i.e., numerical integration). A random sample

then gives a Monte Carlo estimate of the integral

a	 `^ fa ( x i , Y i )

It is well known that certain systematic choices of points (x i , y i ) give

better approximations to such an integral than nonsystematic choices. The

simplest such set of choices is derived by the midpoint rule. For n x m

points (x i , yj ), i = 1, -•-, n; j = 1, •--, m in the rectangle (a,b) x (c,d).

Choose

[X =21-1(b- a)+a]x[Yi 2j ml (d c)i 

The points chosen are the midpoints of a set of isomorphic rectangles sub-

dividing the large rectangle. Then

na = 1	 f a (x i 
I yi)

= 1 j=1

The error in this approximation goes down as 1/n 2 , 1/m2 and depends on the

second derivative of f. Because the weights given to sampled points are all
A

equal, the variance in a that does not depend on x and y is the same as for a

random sample of size n x m.

3



It is known from numerical analysis that if we waive the requirement that the

systematic sample be evenly spaced and evenly weighted, it is possible to make

very large improvements in the accuracy of a numerical integration. Gauss-

Jacobi (ref. 1) integration specifies a set

0 ( Zinn ( 1 ; i n 1, ••• , n

and a set

0 ( Wi ,n

such that if

Xi'- Z i 
,n
(b - a) + b ; y j - Z j ,m (d - c) + c

then

a	 Wi nwj,mf(Xit Yj)

This set is much more economical of sample points than is the midpoint rule.

Because the Wien sample points are not all equal, the variance, due to factors

other than x and y values, will be larger than that for the midpoint rule.

Properties of the Gauss-Jacobi sampling scheme will be derived in the follow-

ing section.
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4. GAUSS-JACOBI QUADRATURE

The Gauss-Jacobi quadrature is developed in most standard works on numerical

analysis or orthogonal polynomials [e.g., Erdelyi (ref. 2)]. However, since

this method is apparently not well known among workers in statistical theory,

some of the more elementary properties are derived below.

Gauss-Jacobi quadrature on a rectangle is simply the Cartesian product of

quadrature on intervals. Therefore, consider the problem of integration on an

interval [0,1]. It is well known thLt square-integrable functions can be

approximated arbitrarily well in the L 2-norm by polynomials. Let f c L 2 be a

polynomial of degree n and p, such that

fl (f - pn )2dx < c small

Then from Scnwartz's inequality (ref. 1)

f 1 f - fop n 2 < c

Thus, approximating f by polynomials allows one to approximate the integral of

f by the integrals of polynomials.

An orthonormal basis for L2 functions is given by the Legendre polynomials on

[0,1]. This is a sequence of polynomials L O , L 1 , LZ , • --, Ln such that Li is

a polynomial of degree i; fl Li n 1; fa L i L^ - 0, is J; and L i (1) > 0 for all

i. This set of properties uniquely characterizes the set L i . Furthermore,

it is easy to see that L0 , ••• , Ln form a basis for the polynomials of

degree <n. A further fact: all roots of L i are real, separated, and lie in

(0,1). Observe that if L i had j < i roots in (0,1), a polynomial of degree

3,pj with those roots could be specified; and, away from the roots, it must

have either always the same or always the opposite sign to L i . Thus,

f l pI L i # 0. But pj - a0L0 + a1 L 1 + --- + a,L, for some constants ak,

so fo pi L i • 0, contradiction.

5



Supose it is desired to use n points of ;jadrature to estimate f. Let p2n-1

by a polynomial of degree 2n - 1 approximating f pointwise and in L 2. Using

formal division of polynomials, one can decompose

p2n-1 ` L ng r•1 ♦ pn-1

where

qn-1 and pn-1 are polynomials of degree n - 1

Then

A
1	 1 L	 + 1

p2n-1 f0 ngn-1 I0 Pn-1

But the first term on the right is zero, since q can be written as a combina-

tion of Li 's where i < n and Ln is orthogonal to both of these. Thus,

f 0 p.n-1 ` j
0 pn-1 and the problem is rp-.,,ced to integrating the lower degree

polynomial. In order to accomplish this, note that at the points x i , i	 1, n

in (0,1) such that L
n (x 1 ) ` 

0
1
 
p2n-1 (x i )

 ` Pn-l(xi). By standard considera-

tions, pn-1 is uniquely determined by its values at the n points x i ; there-

fore, so is its integral. The process of fitting a polynomial to the

pairs 
[x i' p2n- l(xi)3 and integrating the polynomial is readily seen to deter-

mine a set of weights W 1 , ••• , Wn , depending only on n such that

1
i 0 p2n-1

(x)dx 	
WiP2n-1(xi )

The sets (x i }, NO are tabulated and specify the Gauss-Jacobi quadrature
of order n (ref. 1). It is as accurate as interpolating a polynomial of order

2n - 1 in f(x) and integrating the result. By contrast, the midpoint rule is

equivalent to interpolating a piecewise linear function and is, therefore,

prone to much higher error for funct m f exhibiting global regularity.

6
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5. TEST OF THE QUAORATURE APPROACH

To test the relevance of the quadrature approach, 10 Transition Year (TY) seg-

ments were studied. These segments are rectangles, 117 pixels by 196 pixels

in dimension. It was hoped to estimate the area proportion of small grains in

each segment. The function f is then the density of small-grain cultivation

near a point. This was approximated by setting f equal to one for an entire

pixel if the pixel were primarily small grains and to zero if otherwise.

Ground-truth information was used to obtain this value. For comparison, a

6 by 10 grid was used. The grid averaged values over the 60 pixels which were

numbered an odd number of tens (10, 30, 50, 70) in each dimension. This reg-

ular grid was the one used in Procedure 1 as the primary type-2 grid. The

corresponding 6 by 10 Gauss-Jacobi grid was that set of pixels nearest the

n a 6 Gauss points in the first dimension and nearest the m n 10 Gauss points

in the second dimension. These pixels and weights are given in table 5-1.

The estimated proportions of small grains were then compared to "he true

proportions obtained from the ground-truth studies. These results are given

in table 5-2. The mean squared error for the Gauss-Jacobi procedure was sub-

stantially lower than that for the type-2 grid, even though the difference

was not significant according to an F-test. The Gauss-Jacobi procedure was

essentially unbiased. It is interesting to note that treating each of the

two estimates as a random sample (ignoring geographical correlations) would

predict that the Gauss-Jacobi estimate would average -4/3 as much variance as

the regular grid because of unequal weights.
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TABLE 5-1.- THE PIXEL NUMBER AND WEIGHTS OF THE GAUSS-•1AC08I GRIDS

[Modified from Abramowitz and Stegun (ref. 1)]

First coordinate: 117 pixels (n n 6) to be sled

Points (pixel number) Weights

4 0.085662246

20 .1803807865

45 .233956967

73 .233956967

98 .1803807865

114 1	 .005662246

Second coordinate: 196 pixels (n n 10) to be sampled

Points (pixel number)	 Weights

3 0.03333567215

14 .0747256746

32 .1095431813

56 .1346333597

84 .1477621124

113 .1477621124

141 .1346333597

165 .1095431813

183 .0747256746

194 .033335G'7215

°Estimate n 	 f(N19 
p2) W1 W2
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TABLE 5-2.- RESULTS OF A COMPARISON OF ESTIMATED PROPORTIONS OF

SMALL GRAINS VERSUS TRUE PROPORTIONS OF SMALL GRAINS

OBTAINED BY GROUND TRUTH

Gauss-Jacobi dots Type 2 dots
Segment Ground truth, (small	 grains) (small	 grains)
number percent

Percent o e Percent +	 a n

1394 35.45 37.96 2.51 6.3 32.14 -3.31 10.96

1457 47.72 53.79 6.07 36.85 28.81 -18.91 357.59

1472 37.95 25.84 -12.11 146.65 36.21 -1.74 3.03

1518 34.16 40.82 6.66 44.36 33.93 -0.23 0.05

1584 51.58 49.03 -2.55 6.5 48.33 -3.25 10.56

1602 30.42 34.38 3.96 15.68 23.3 -7.09 50.27

1619 47.91 53.00 5.09 25.91 38.33 -9.58 91.78

1668 9.49 3.88 -5.61 31.47 8.33 -1.16 1.35

1909 22.35 22.10 -0.25 0.06 33.33 10.98 120.56

1918 15.02 12.67 -2.35 5.52 12.28 -2.74 7.51

Mean bias, Mean squared Mean bias, Mean squared
percent error percent error

-.14 0.00319 -3.7 0.00654
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6. CONCLUSION

This experiment should be replicated with more segments in order to establish

whether or not the observed improvement is due to chance. Further considera-

tion should be given to what other properties of the segment can be estimated

more efficiently when using Gauss-Jacobi sampling rather than using regular

sampling. Some possibilities are yield (i.e., small-grains production on a

more refined scale than 0 and 1) and various parameters of the spectral dis-

tribution. Since these two possibilities are more nearly continuous than the

mere presence or absence of grain, Gauss-Jacobi sampling may achieve rela-

tively better results in these cases.
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